“If you have never been late for your flight, you have wasted too much time at the airport. If you have never been rejected for love, you have not loved enough.”

--- Andrew Gelman (Professor of Statistics and Political Science, Columbia University)

A (Hopefully) Well Accepted Statistical Theory of Rejection

Theorem 1 *For any acceptance worth competing for, the probability of a randomly selected applicant being rejected is higher than the probability of being accepted.*

Proof: Anything worth competing for means more than 50% people will be rejected.

“Ok, but I am *not* a randomly selected person! I am the best of my school/class/peer group.”

Yes -- but so are many others who are competing with you! Sooner or later, someone is going to beat you, because …

Theorem 2 *A local maximum cannot exceed the global maximum.*

Proof: By definition, the global maximum is the maximum of all local maxima.

“But I am really the best, the global maximum.” Sure, you may indeed be the ultimate champion of Ultimate Frisbee, and chess, and tennis, but ultimately there will a game that is simply not your game. In other words…

Theorem 3 *The probability that you will be accepted for everything you compete for is zero.*

Proof: You wouldn’t be reading this if this theorem were false.

“Alright, I admit that I was rejected a couple of times. But that was really unfair, as everyone told me that I should have won/been accepted!” True, if you modify “everyone” by “everyone who talked to me”, because…

Theorem 4 *The probability of hearing that you should be a winner is higher than that of hearing you should be a loser.*

Proof: How many times have *you* told someone you know, “Hey, you are going to be a loser!”?

“But I still think it was unfair, because I was just so well qualified!” True again, but there are others who were equally so. Even if you make into the final two and a fair coin has to be tossed to decide, the very phrase *fair* implies that you still have 50% of chance of being rejected!

Grand Theorem: Statistically, you are rejected, and probabilistically, it is fair.

[By Xiao-Li Meng, a statistics professor, who wishes that your personal experiences reject this theory.]