NUMBERS, FUNCTIONS, PERMUTATIONS, GRAPHS

R is like a scientific calculator

exp(1) # natural logarithmic base
log(2) # logarithm of 2, base e
pi # Archimedes' constant

> exp(1)
[1] 2.718282
> log(2)
[1] 0.6931472
> pi
[1] 3.141593

getOption("digits") # single precision display is default but
computations always in double precision

options(digits=15)

exp(1)
log(2)
pi

> exp(1)
[1] 2.71828182845905
> log(2)
[1] 0.693147180559945
> pi
[1] 3.14159265358979

options(digits=7) # return to default

getOption("scipen")
options(scipen=-5) # negative penalty biases toward
scientific notation

exp(1)*10^(-17)
log(2)*10^19
pi

> exp(1)*10^(-17)
[1] 2.718282e-17
> log(2)*10^19
[1] 6.931472e+18
> pi
[1] 3.141593e+00

options(scipen=0) # return to default
v <- c(exp(1), log(2), pi) # c means 'concatenate'
v # vector output
1:12 # a vector with elements 1,2,...,12

> v
[1] 2.71828180 0.6931472 3.1415927
> 1:12
[1] 1 2 3 4 5 6 7 8 9 10 11 12

how to create a square matrix?
A <- c(1,2,4,2,5,10,0,-1,-1) # one way
dim(A) <- c(3,3) # columns are populated in order
A

matrix(c(1,2,4,2,5,10,0,-1,-1),c(3,3))
another way (done in one line!)

> A
 [,1] [,2] [,3]
[1,] 1 2 0
[2,] 2 5 -1
[3,] 4 10 -1

> matrix(c(1,2,4,2,5,10,0,-1,-1),c(3,3))
 [,1] [,2] [,3]
[1,] 1 2 0
[2,] 2 5 -1
[3,] 4 10 -1

> c(nrow(A),ncol(A))
c(nrow(v),ncol(v)) # a vector is not considered a column matrix
c(NROW(A),NCOL(A)) # NROW same as nrow over matrices;
 # likewise NCOL same as ncol

> c(NROW(v),NCOL(v)) # NROW and NCOL also work over vectors,
 # thankfully!

> c(nrow(A),ncol(A))
[1] 3 3
> c(nrow(v),ncol(v))
NULL
> c(NROW(A),NCOL(A))
[1] 3 3
> c(NROW(v),NCOL(v))
[1] 3 1

t(A) # transpose of a matrix
t(v) # transpose of a vector yields a row
t(t(v)) # hitting again with t gives a column

> t(A)
 [,1] [,2] [,3]
[1,] 1 2 4
[2,] 2 5 10
[3,] 0 -1 -1
> t(v)
[,1] [,2] [,3] [1,] 2.718282 0.6931472 3.141593
> t(t(v))
 [,1] [,2] [,3] [1,] 2.7182818 0.6931472 3.1415927

> t(1:12)
t(t(1:7))

 [2,] 9 10 11 12

B=t(A)
A
B
A%*%B # matrix product
A*B # products of entries

> A
 [,1] [,2] [,3] [1,] 1 2 0
 [2,] 2 5 -1
 [3,] 4 10 -1
> B
 [,1] [,2] [,3] [1,] 1 2 4
 [2,] 2 5 10
 [3,] 0 -1 -1
> A%*%B
 [,1] [,2] [,3] [1,] 5 12 24
 [2,] 12 30 59
 [3,] 24 59 117
> A*B
 [,1] [,2] [,3] [1,] 1 4 0
 [2,] 4 25 -10
 [3,] 0 -10 1

solve(A) # matrix inverse
A^(-1) # reciprocals of elements

> solve(A) # matrix inverse
 [,1] [,2] [,3] [1,] 5 2 -2
\[
\begin{bmatrix}
2 & -1 & 1 \\
3 & 0 & -2 & 1 \\
\end{bmatrix}
\]

\[A^{-1}\]
reciprocals of elements

\[
\begin{bmatrix}
1,1 & 1.00 & 0.5 & \text{Inf} \\
1,2 & 0.50 & 0.2 & -1 \\
1,3 & 0.25 & 0.1 & -1 \\
\end{bmatrix}
\]

\[\text{solve}(A, \text{diag}(3))\]
solve(A) is shorthand for determining X:
\[A \times X = \text{diag}(3)\] (the 3x3 identity matrix)

\[\text{matrix}(1,3,3)/A\]
another way of finding reciprocals

\[\text{solve}(A, \text{diag}(3))\]

\[
\begin{bmatrix}
1,1 & 5 & 2 & -2 \\
1,2 & -2 & -1 & 1 \\
1,3 & 0 & -2 & 1 \\
\end{bmatrix}
\]

\[\text{matrix}(1,3,3)/A\]

\[
\begin{bmatrix}
1,1 & 1.00 & 0.5 & \text{Inf} \\
1,2 & 0.50 & 0.2 & -1 \\
1,3 & 0.25 & 0.1 & -1 \\
\end{bmatrix}
\]

a simple one-line function

\[\text{sq} \leftarrow \text{function}(x) \ x^2\]
formula to right
\[\text{sq}(-2)\]
\[\text{sq}(3)\]

\[\text{cb} \leftarrow \text{function}(x)\]
\{
\[x^3\]
formula inside \{ \}
\}
\[\text{cb}(-2)\]
\[\text{cb}(3)\]

\[\text{sapply}(1:12, \text{sq})\]
\text{sq} is evaluated at each integer in the vector
(\text{s means 'simplify' - related to \text{lapply}} -
\text{sapply does likewise at each variable in a dataframe)}
\[\text{sapply}(-5:5, \text{cb})\]

\[\text{sapply}(1:12, \text{sq})\]

\[\text{[1]}\ 1\ 4\ 9\ 16\ 25\ 36\ 49\ 64\ 81\ 100\ 121\ 144\]

\[\text{sapply}(-5:5, \text{cb})\]

\[\text{[1]}\ -125\ -64\ -27\ -8\ -1\ 0\ 1\ 8\ 27\ 64\ 125\]
sq(1:12) # this shorthand also works (but not for next example)
cb(-5:5)

> sq(1:12)
[1] 1 4 9 16 25 36 49 64 81 100 121 144
> cb(-5:5)
[1] -125 -64 -27 -8 -1 0 1 8 27 64 125

sq(1:24) # wrap-around is messy

> sq(1:24)
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361
[20] 400 441 484 529 576

How can we efficiently generate random objects? (simulation)

sample(10) # a random permutation on 1:10
sample(10)
sample(10)
sample(10)
sample(10)
sample(10)
sample(10) # how to do this m times & store in an m-by-10 matrix?

> sample(10)
[1] 5 3 6 8 1 2 9 10 4 7
> sample(10)
[1] 8 3 1 9 5 4 10 6 7 2
> sample(10)
[1] 2 4 8 6 5 3 10 7 9 1
> sample(10)
[1] 3 7 6 4 9 8 10 1 2 5
> sample(10)
[1] 6 3 8 9 7 10 4 5 2 1
> sample(10)
[1] 8 5 7 3 1 10 2 4 9 6
> sample(10)
[1] 5 8 4 1 3 6 10 2 9 7

sapply(1:7,sample) # doesn't do what we want...

> sapply(1:7,sample)
[[1]]
[1] 1
[[2]]
[1] 1 2
[[3]]
[1] 2 1 3
[[4]]
[1] 4 1 2 3
[[5]]
[1] 5 4 1 2 3
sapply(1:7,sample(10)) # ...nor does this (but error msg is helpful)

t(sapply(1:7, function(o) sample(10))) # this works!

> sapply(1:7, function(o) sample(10))
Error in match.fun(FUN) : 'sample(10)' is not a function, character or symbol

> t(sapply(1:7, function(o) sample(10)))

more generally, define:

myrndprm <- function(m,n)
{
 t(sapply(1:m, function(o) sample(n))) # o is only a dummy variable
} # t means 'transpose'

myrndprm(7,10)

> myrndprm(7,10)

Random permutations can be used to approximate the solution
to the following "matching problem": n letters fall out
of their envelopes and are replaced at random. What is
the probability of at least one correctly replaced letter?

Here is the same, using "for" loops (as in C). In older
versions of R, "sapply" was substantially faster than # "for". Nowadays, the two approaches take essentially # the same runtime.

```r
myrndprm.alt <- function(m,n)
{
  M <- matrix(0,m,n)   # initially a matrix of zeroes
  for (j in 1:m)
  {
    M[j,] <- sample(n)   # row j of the matrix
  }
  M
}

myrndprm.alt(7,10)
```

```r
> myrndprm.alt(7,10)
[1,]  2  7  1  3  4  5  6  8 10   9
[2,] 10  4  1  8  6  2  3  9  7   5
[3,]  7  2  6  5 10  4  9  8  3   1
[4,]  7  5  1  3  9  6  8  2 10   4
[5,]  7  2  3  9  6  4  8 10  1   5
[6,]  5  7  6  3  9  1  2 10  4   8
[7,] 10  5  2  6  9  3  8  4  1   7
```

```r
time.start <- proc.time( )
Y <- myrndprm.alt(100000,10)
time.used <- proc.time( ) - time.start
cat('User time elapsed:', time.used[1], '
')
```

```r
> User time elapsed: 1.509
```

When possible, use a "whole-object" approach in R # (avoiding multiple nested "for" loops, whose # entry-by-entry bookkeeping slows everything down)

We'll see a faster way of generating random permutations # in Matlab (creating a random matrix first, then sorting # & retaining the indices per row via quick built-in).

Graphing a curve in xy-plane (y is a function of x) is easy!

```r
f <- function(x) 3.5^(-0.5*x)*cos(6*x)
curve(f,from=-2,to=4,col="blue",lwd=2, 
    main="Plot of a Function R -> R", 
    xlab="independent variable", 
    ylab="dependent variable")
```
```r
# Graphing a curve in xyz-space (parametric functions of t)
# can be done using a user-contributed function.
library(scatterplot3d)
t <- seq(0, 6*pi, 0.01)
x <- sin(t)
y <- cos(t)
z <- 5*t
(x11() # keep old plot and open a new plotting window
caret_3d(x, y, z, highlight.3d=TRUE, col.axis="blue",
```)
Graphing a surface in xyz-space (z is a function of x,y) is
a little harder.

x <- seq(-2, 2, 0.05)
y <- seq(-2, 2, 0.05)
h <- function(x, y) 100*(y-x^2)^2+(1-x)^2
z <- outer(x, y, h) # outer product, i.e., h applied to each (x,y)
```
x11()
persp(x, y, z, zlim = c(0,1000), theta = 15, phi = 30, expand = 0.5,
    col = c("grey","red"), ticktype = "detailed",
    main = "Plot of a Function R^2 -> R")
```
How can we solve a single nonlinear equation?
{
 x11()
 curve(x - 2*(1-exp(-x)), from=0, to=2, col="red", lwd=2)
 curve(0*x, from=0, to=2, add=TRUE, col="blue", lty=3)
}

options(digits=15)
k <- function(x) x - 2*(1 - exp(-x))
unroot(k, lower=1.5, upper=1.8, tol=10^(-15))$root
options(digits=7) # return to default
graphics.off() # closes all four plots
uniroot(k, lower=1.5, upper=1.8, tol=10^(-15))$root
[1] 1.59362426004004

ls.str() # listing of variables currently in memory
rm(X,Y) # delete certain variables
ls.str()

> ls.str()
A : num [1:3, 1:3] 1 2 4 2 5 10 0 -1 -1
B : num [1:3, 1:3] 1 2 0 2 5 -1 4 10 -1
cb : function (x)
f : function (x)
h : function (x, y)
k : function (x)
myrndprm : function (m, n)
myrndprm.alt : function (m, n)
sq : function (x)
t : num [1:1885] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
time.start : num [1:5] 4.35 0.18 225.82 NA NA
time.used : num [1:5] 2.75 0.00 8.61 NA NA
v : num [1:3] 2.718 0.693 3.142
x : num [1:81] -2 -1.95 -1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 ...
X : int [1:100000, 1:10] 8 4 1 1 6 8 4 3 7 10 ...
y : num [1:81] -2 -1.95 -1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 ...
Y : num [1:100000, 1:10] 10 1 9 9 1 4 6 10 9 5 ...
z : num [1:81, 1:81] 3609 3376 3156 2948 2948 2754 ...
>
> ls.str()
A : num [1:3, 1:3] 1 2 4 2 5 10 0 -1 -1
B : num [1:3, 1:3] 1 2 0 2 5 -1 4 10 -1
cb : function (x)
f : function (x)
h : function (x, y)
k : function (x)
myrndprm : function (m, n)
myrndprm.alt : function (m, n)
sq : function (x)
t : num [1:1885] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
time.start : num [1:5] 4.35 0.18 225.82 NA NA
time.used : num [1:5] 2.75 0.00 8.61 NA NA
v : num [1:3] 2.718 0.693 3.142
x : num [1:81] -2 -1.95 -1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 ...
X : int [1:100000, 1:10] 8 4 1 1 6 8 4 3 7 10 ...
y : num [1:81] -2 -1.95 -1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 ...
Y : num [1:100000, 1:10] 10 1 9 9 1 4 6 10 9 5 ...
z : num [1:81, 1:81] 3609 3376 3156 2948 2948 2754 ...

More plots & equations will be examined
when we talk about Matlab. Let's move away
from scientific programming for now...

RUDIMENTARY DATA ANALYSIS & STATISTICS

furnace0 <- read.delim("C:/Users/sfinch/Desktop/furnace.txt", header=TRUE)
must use forward slash /, not backslash \, when specifying
pathnames as above

```r
furnace <- subset(furnace0, select = c(CHArea, CHHght, Age, BTUIn, BTUOut, Damper))
furnace  # just one missing datapoint (CHArea in line 24)
names(furnace)  # names of all variables in dataframe...
summary(furnace)  # ...and associated summary statistics
```

```r
> furnace

<table>
<thead>
<tr>
<th>CHArea</th>
<th>CHHght</th>
<th>Age</th>
<th>BTUIn</th>
<th>BTUOut</th>
<th>Damper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>20</td>
<td>8</td>
<td>7.87</td>
<td>8.25</td>
</tr>
<tr>
<td>2</td>
<td>144</td>
<td>26</td>
<td>75</td>
<td>9.43</td>
<td>9.66</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>30</td>
<td>44</td>
<td>7.16</td>
<td>8.33</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>24</td>
<td>75</td>
<td>8.67</td>
<td>8.82</td>
</tr>
<tr>
<td>5</td>
<td>168</td>
<td>35</td>
<td>30</td>
<td>12.31</td>
<td>12.06</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>17</td>
<td>4</td>
<td>9.84</td>
<td>9.67</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>24</td>
<td>45</td>
<td>16.90</td>
<td>17.51</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>18</td>
<td>16</td>
<td>10.04</td>
<td>10.79</td>
</tr>
<tr>
<td>9</td>
<td>96</td>
<td>25</td>
<td>45</td>
<td>12.62</td>
<td>13.59</td>
</tr>
<tr>
<td>10</td>
<td>108</td>
<td>27</td>
<td>40</td>
<td>7.62</td>
<td>7.99</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>16</td>
<td>22</td>
<td>11.12</td>
<td>12.64</td>
</tr>
<tr>
<td>12</td>
<td>63</td>
<td>30</td>
<td>40</td>
<td>13.43</td>
<td>14.42</td>
</tr>
<tr>
<td>13</td>
<td>42</td>
<td>15</td>
<td>13</td>
<td>9.07</td>
<td>9.25</td>
</tr>
<tr>
<td>14</td>
<td>117</td>
<td>25</td>
<td>99</td>
<td>6.94</td>
<td>7.79</td>
</tr>
<tr>
<td>15</td>
<td>64</td>
<td>18</td>
<td>19</td>
<td>10.28</td>
<td>11.29</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>17</td>
<td>30</td>
<td>9.37</td>
<td>10.26</td>
</tr>
<tr>
<td>17</td>
<td>64</td>
<td>28</td>
<td>60</td>
<td>7.93</td>
<td>9.46</td>
</tr>
<tr>
<td>18</td>
<td>64</td>
<td>19</td>
<td>30</td>
<td>13.96</td>
<td>14.77</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>26</td>
<td>10</td>
<td>6.80</td>
<td>7.21</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>27</td>
<td>60</td>
<td>4.00</td>
<td>4.29</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>14</td>
<td>24</td>
<td>8.58</td>
<td>9.81</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>23</td>
<td>70</td>
<td>8.00</td>
<td>8.41</td>
</tr>
<tr>
<td>23</td>
<td>64</td>
<td>17</td>
<td>12</td>
<td>5.98</td>
<td>6.78</td>
</tr>
<tr>
<td>24</td>
<td>NaN</td>
<td>30</td>
<td>60</td>
<td>15.24</td>
<td>16.30</td>
</tr>
<tr>
<td>25</td>
<td>64</td>
<td>27</td>
<td>40</td>
<td>8.54</td>
<td>9.01</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>19</td>
<td>17</td>
<td>11.09</td>
<td>11.41</td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>18</td>
<td>15</td>
<td>11.70</td>
<td>12.37</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>18</td>
<td>18</td>
<td>12.71</td>
<td>13.28</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>18</td>
<td>4</td>
<td>6.78</td>
<td>7.24</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>16</td>
<td>5</td>
<td>9.82</td>
<td>10.55</td>
</tr>
<tr>
<td>31</td>
<td>80</td>
<td>26</td>
<td>75</td>
<td>12.91</td>
<td>13.89</td>
</tr>
<tr>
<td>32</td>
<td>50</td>
<td>18</td>
<td>14</td>
<td>10.35</td>
<td>10.72</td>
</tr>
<tr>
<td>33</td>
<td>28</td>
<td>15</td>
<td>8</td>
<td>9.60</td>
<td>9.22</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
<td>31</td>
<td>99</td>
<td>9.58</td>
<td>10.61</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>16</td>
<td>99</td>
<td>9.83</td>
<td>10.04</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>20</td>
<td>34</td>
<td>9.52</td>
<td>10.20</td>
</tr>
<tr>
<td>37</td>
<td>108</td>
<td>25</td>
<td>80</td>
<td>18.26</td>
<td>20.55</td>
</tr>
<tr>
<td>38</td>
<td>64</td>
<td>25</td>
<td>99</td>
<td>10.64</td>
<td>11.75</td>
</tr>
<tr>
<td>39</td>
<td>36</td>
<td>26</td>
<td>99</td>
<td>6.62</td>
<td>7.08</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>16</td>
<td>6</td>
<td>5.20</td>
<td>5.50</td>
</tr>
<tr>
<td>41</td>
<td>49</td>
<td>32</td>
<td>50</td>
<td>12.28</td>
<td>13.07</td>
</tr>
<tr>
<td>42</td>
<td>38</td>
<td>16</td>
<td>10</td>
<td>7.23</td>
<td>7.60</td>
</tr>
<tr>
<td>43</td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>2.97</td>
<td>3.20</td>
</tr>
<tr>
<td>44</td>
<td>64</td>
<td>20</td>
<td>99</td>
<td>8.81</td>
<td>9.28</td>
</tr>
<tr>
<td>45</td>
<td>72</td>
<td>31</td>
<td>15</td>
<td>9.27</td>
<td>9.73</td>
</tr>
<tr>
<td>46</td>
<td>70</td>
<td>39</td>
<td>45</td>
<td>11.29</td>
<td>11.73</td>
</tr>
</tbody>
</table>
```
> names(furnace)
[1] "CHArea" "CHHght" "Age" "BTUIn" "BTUOut" "Damper"

> summary(furnace)

<table>
<thead>
<tr>
<th>CHArea</th>
<th>CHHght</th>
<th>Age</th>
<th>BTUIn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>28.00</td>
<td>1.00</td>
<td>2.970</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>28.00</td>
<td>12.00</td>
<td>7.947</td>
</tr>
<tr>
<td>Median</td>
<td>64.00</td>
<td>30.00</td>
<td>9.835</td>
</tr>
<tr>
<td>Mean</td>
<td>62.56</td>
<td>21.97</td>
<td>10.038</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>80.00</td>
<td>60.00</td>
<td>12.045</td>
</tr>
<tr>
<td>Max.</td>
<td>168.00</td>
<td>99.00</td>
<td>18.260</td>
</tr>
<tr>
<td>NA's</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> names(furnace)
[1] "CHArea" "CHHght" "Age" "BTUIn" "BTUOut" "Damper"
```r
# Means, standard deviations & BTU scatterplot

mean(furnace)
mean(furnace, na.rm=TRUE)

sd(furnace, na.rm=TRUE)  # (curiously not given by 'summary'!)

> mean(furnace)
  CHArea    CHHght       Age     BTUIn    BTUOut    Damper
       NA 21.966667 38.566667 10.038444 10.813111  1.555556
> mean(furnace, na.rm=TRUE)
  CHArea     CHHght        Age      BTUIn     BTUOut     Damper
       62.561798  21.966667  38.566667  10.038444  10.813111  1.555556
> sd(furnace, na.rm=TRUE)  # (curiously not given by 'summary'!)
  CHArea     CHHght        Age      BTUIn     BTUOut     Damper
       32.5307390  5.9254735  31.0932089  2.8679903  3.0884073  0.4996878

plot(furnace$BTUOut~furnace$BTUIn,
     xlab="BTUIn", ylab="BTUOut",
     main="BTUIn vs BTUOut for Furnace Data",
     xlim=c(2,20), ylim=c(2,22), col="magenta", pch=5)
```
BTU scatterplot, stratified by damper type

Although treated by 'summary' as a numeric variable,
"Damper" is actually a categorical (factor) variable

H <- hist(furnace$Damper, breaks=2, plot=FALSE)
H$counts

> H$counts
[1] 40 50
We can help R reinterpret "Damper" so that 'summary' gives
histogram for "Damper", but other stats for other variables

```r
furnace$Damper <- factor(furnace$Damper, levels=1:2)
levels(furnace$Damper)
is(furnace$Damper)[1] # 'is' identifies variable type
is(furnace$CHArea)[1]

> levels(furnace$Damper)
[1] "1" "2"
> is(furnace$Damper)[1] # 'is' identifies variable type
[1] "factor"
> is(furnace$CHArea)[1]
[1] "numeric"

summary(furnace)

> summary(furnace)
  CHArea           CHHght           Age            BTUIn
  Min.   : 28.00   Min.   :14.00   Min.   : 1.00   Min.   : 2.970
  1st Qu.: 28.00   1st Qu.:17.00   1st Qu.:12.00   1st Qu.: 7.947
  Median : 64.00   Median :20.00   Median :30.00   Median : 9.835
  Mean   : 62.56   Mean   :21.97   Mean   :38.57   Mean   :10.038
  3rd Qu.: 80.00   3rd Qu.:27.00   3rd Qu.:60.00   3rd Qu.:12.045
  Max.   :168.00   Max.   :39.00   Max.   :99.00   Max.   :18.260
  NA's   :  1.00
  BTUOut       Damper
  Min.   : 3.200   1:40
  1st Qu.: 8.707   2:50
  Median :10.740
  Mean   :10.813
  3rd Qu.:12.797
  Max.   :20.550

furnace$Damper <- as.numeric(furnace$Damper) # reversal of above
is(furnace$Damper)[1]

> is(furnace$Damper)[1]
[1] "numeric"

# It's inconvenient to be carrying "furnace$"!

search() # objects in the workspace

> search() # objects in the workspace
[1] ".GlobalEnv" "package:scatterplot3d" "package:methods"
[7] "package:utils" "package:datasets" "Autoloads"
[10] "package:base"

attach(furnace)

search() # our dataset now added (no. 2 in search path)

> search() # our dataset now added (no. 2 in search path)
[1] ".GlobalEnv" "furnace" "package:scatterplot3d"
hist(Damper, breaks=2, plot=FALSE)

> hist(Damper, breaks=2, plot=FALSE)

[1] 40 50

{  
x11()  
plot(BTUOut[Damper==1]~BTUIn[Damper==1],  
    xlab="BTUIn", ylab="BTUOut", xaxt="n", yaxt="n",  
    main="BTUIn vs BTUOut for Stratified Furnace Data",  
    xlim=c(2,20), ylim=c(2,22), col="blue", pch=1)
points(BTUOut[Damper==2]~BTUIn[Damper==2], col="red", pch=4)
axis(1, at=seq(2,20,2))
axis(2, at=seq(2,22,2))
legend(15,8,c('EVD','TVD'),pch=c(1,4),col=c("blue","red"))
}
# "points" is for overlay; suppress initial plotting of axes,  
# so as to control tick mark placements subsequently

# "plot" understood by R to be scatterplot; tilde (~) to  
# be explained later

# BTUIn histogram & 90% parameter confidence intervals
x11()
hist(BTUIIn, freq=TRUE, border="darkblue", xaxt="n",
   main="BTUIIn Histogram & Normal Fit",
   xlim=c(2,20), ylim=c(0,30), plot=TRUE)
axis(1, at=seq(2,20,2))
curve(180*dnorm(x, mean(BTUIIn), sd(BTUIIn)),
    from=0, to=20, add=TRUE, col="red", lwd=2)

BTUIIn Histogram & Normal Fit

count <- function(x) sum(!is.na(x))
N <- count(BTUIn)
M <- mean(BTUIn)
S <- sd(BTUIn)

A <- M+S*qt(0.05,N-1)/sqrt(N)  # qt returns specified %-tiles of
B <- M+S*qt(0.95,N-1)/sqrt(N)  # Student t distribution, N-1 dof
cat('90 pct CI about BTUIn mean:', A, M, B, '\n')

> 90 pct CI about BTUIn mean: 9.535954 10.03844 10.54094

A <- S*sqrt((N-1)/qchisq(0.95,N-1))  # qchisq returns specified
B <- S*sqrt((N-1)/qchisq(0.05,N-1))  # %-tiles of Chi square dist
cat('90 pct CI about BTUIn stdv:', A, S, B, '\n')

> 90 pct CI about BTUIn stdv: 2.556354 2.867990 3.275093

# Can obtain histogram & interval estimates
# for BTUOut as well

# One graphical method of comparison: placing
# BTUIn & BTUOut histograms side-by-side

# Simple linear regression

lm(BTUOut~BTUIn)  # very brief output!

> lm(BTUOut~BTUIn)

Call:
lm(formula = BTUOut ~ BTUIn)

Coefficients:
(Intercept)        BTUIn
     0.2074       1.0565

# tilde (~) means here that "BTUOut" is described by "BTUIn"

# much more information is seen via various extractor functions

btu <- lm(BTUOut~BTUIn)  # give the linear model object a name
summary(btu)  # R^2 (square of correlation coefficient)

> summary(btu)

> Call:
lm(formula = BTUOut ~ BTUIn)

Residuals:
    Min     1Q Median     3Q    Max
-1.79450 -0.26337 -0.04183  0.24949  3.36064

Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)     0.20742    0.23177   0.895    0.373
BTUIn           1.05651    0.02221  47.571   <2e-16


x11()
plot(BTUOut~BTUIn,
     xlab="BTUIn", ylab="BTUOut",
     main="BTUIn vs BTUOut and Least Squares Regression Line",
     xlim=c(2,20), ylim=c(2,22), col="magenta", pch=5)
abline(btu, col="red")

# our original BTU scatterplot, plus best linear fit
FIT <- fitted(btu)  # y-values we expect for observed
# x-values, given the linear fit

segments(BTUIn,FIT,BTUIn,BTUOut)  # (x1,y1,x2,y2)

# Same scatterplot, plus vertical lines (residuals = obs & fit diff)

# Regression diagnostic plots say even more
(x11())
par(mfrow=c(3,2), mex=0.5)  # establish 3x2 layout, compressed margin
plot(btu,which=1:6)         # Cook's distance: measure of influence of 
                            # each obs on the regression coefficients

par(mfrow=c(1,1), mex=1)    # reset
{
xll()
plot(btu,which=1:6)        # or, if you prefer, visit one plot at a time
}
graphics.off()  # close plot