Appendices to “To Center or Not to Center: That is Not the Question — An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency”

Yaming Yu
Department of Statistics, University of California, Irvine
Xiao-Li Meng
Department of Statistics, Harvard University
June 14, 2011

A Auxiliary Material for Section 3

A.1 Details of the MCMC Steps in the Poisson Time Series Example

Step 1: This step consists of T substeps, one for each $t = 1, \ldots, T$.

For substep t, the target conditional density is

$$p(\xi_t|\xi_{t-1}, \xi_{t+1}, \beta, \rho, \delta, Y) \propto \exp\{-(\xi_t - \mu_t)^2/(2\sigma_t^2) - d_t e^{X_t \beta + \xi_t}\},$$

where $\mu_t = (Y_t \delta^2 + (\xi_{t-1} + \xi_{t+1})\rho)/(1 + \rho^2), \sigma_t^2 = \delta^2/(1 + \rho^2)$, if $t \neq 1$ and $t \neq T$, and $\mu_1 = Y_1 \delta^2 + \xi_1 \rho, \mu_T = Y_T \delta^2 + \xi_{T-1} \rho, \sigma_1^2 = \sigma_T^2 = \delta^2$.

Define $l_t(\xi_t) = \log p(\xi_t|\xi_{t-1}, \xi_{t+1}, \beta, \rho, \delta, Y)$. First, use Newton-Raphson to locate the mode \hat{x} of l_t, and then calculate $l_t''(\hat{x})$. Then draw t_5 according to a t distribution with 5 degrees of freedom, and propose $\xi_t^{\text{new}} = \hat{x} + t_5/\sqrt{-l_t''(\hat{x})}$. Draw a uniform random number u between 0 and 1. Accept ξ_t^{new} if

$$u \leq \exp\{l_t(\xi_t^{\text{new}}) - l_t(\xi_t^{\text{old}}) - h(\xi_t^{\text{new}}) + h(\xi_t^{\text{old}})\},$$

where $h(\cdot)$ is the log density of t_5 centered at x with scale $1/\sqrt{-l_t''(\hat{x})}$.

Step 2: The target conditional density is

$$p(\beta|\xi, \rho, \delta, Y) \propto \exp \left\{ \sum_t (Y_t X_t \beta - d_t e^{X_t \beta + \xi_t}) \right\}.$$
the MLE and the observed Fisher information.) Draw T_5 according to a p-variate t_5, and propose $\beta^{new} = \hat{\beta} + I^{-1/2}T_5$. Draw $u \sim U(0, 1)$, and accept β^{new} if

$$u \leq \exp\{l(\beta^{new}) - l(\beta^{old}) - H(\beta^{new}) + H(\beta^{old})\},$$

where $H(\cdot)$ is the log density of T_5 centered at $\hat{\beta}$ and with scale $I^{-1/2}$.

Step 2$: The target conditional density $p(\beta|\eta, \rho, \delta, Y)$ is multivariate normal.

Let $Z^T = (Z_1^T, \ldots, Z_T^T)$, where $Z_1 = \sqrt{1 - \rho^2}X_1$ and $Z_t = X_t - \rho X_{t-1}$, $t \geq 2$. Let $\bar{\eta} = (\sqrt{1 - \rho^2}\eta_1, \eta_2 - \rho\eta_1, \eta_3 - \rho\eta_2, \ldots, \eta_T - \rho\eta_{T-1})^T$. Compute $\hat{\beta} = (Z^TZ)^{-1}Z^T\bar{\eta}$, and then draw $\beta^{new} \sim N_p(\hat{\beta}, (Z^TZ)^{-1}\delta^2)$. Set $\xi_t^{new} = \eta_t - X_t\beta^{new}$.

Step 3$: The target conditional density is

$$p(\rho, \delta|\beta, \xi, Y) \propto \delta^{-T} \exp \left\{ -\frac{1}{2\delta^2} \left[(1 - \rho^2)\xi_1^2 + \sum_{t=2}^{T}(\xi_t - \rho\xi_{t-1})^2 \right] \right\}.$$

Compute $\hat{\rho} = \sum_{t=2}^{T}\xi_t\xi_{t-1}/\sum_{t=2}^{T-1}\xi_t^2$ and $\hat{\delta}^2 = (1 - \rho^2)\xi_1^2 + \sum_{t=2}^{T}(\xi_t - \rho\xi_{t-1})^2$. Draw $\delta_{new}^2 = \hat{\delta}^2/\chi^2_{T-2}$, and $\rho_{new} \sim N(\hat{\rho}, \delta_{new}^2/\sum_{t=2}^{T-1}\xi_t^2)$, where χ^2_{T-2} is a χ^2 random variable with $T - 2$ degrees of freedom. Accept δ_{new}^2 and ρ_{new} if $-0.99 \leq \rho_{new} \leq 0.99$.

Step 3A: The target conditional density is

$$p(\rho, \delta|\beta, \kappa, Y) \propto (1 - \rho^2)^{-1/2} \exp \left\{ \sum (\xi_tY_t - d_t e^{\xi_t + X_t\beta}) \right\},$$

where ξ and κ are related by $\kappa_1 = \sqrt{1 - \rho^2}\xi_1/\delta$, and $\kappa_t = (\xi_t - \rho\xi_{t-1})/\delta$, $t \geq 2$. Define $l(\rho, \delta) = \log p(\rho, \delta|\beta, \kappa, Y)$.

Propose a random-walk type move, $(\rho, \delta) \rightarrow (\rho^{new}, \delta^{new})$, by setting $\rho^{new} = \rho + s_1u_1$ and $\delta^{new} = \delta \exp\{s_2u_2\}$, where u_1, u_2 are i.i.d Uniform$(-1/2, 1/2)$, and s_1, s_2 are suitable step sizes (which may be tuned adaptively during the burn-in period). Draw a uniform random number u_0 between 0 and 1, and accept $(\rho^{new}, \delta^{new})$ if $-0.99 \leq \rho^{new} \leq 0.99$ and

$$u_0 \leq \exp\{l(\rho^{new}, \delta^{new}) - l(\rho, \delta) + s_2u_2\}.$$

Repeat the entire procedure several times to achieve a reasonable acceptance rate. Keep ξ updated via (3.7).

Step 3A': Same as Step 3A, except that we fix δ, i.e., we set $s_2 = 0$.

Step 3A'': Same as Step 3A, except that we fix ρ, i.e., we set $s_1 = 0$.

2
Figure A.1: Comparing Scheme A with Scheme C on DATA1. Autocorrelations of the Monte Carlo draws (excluding the burn-in period) are displayed.

Figure A.2: Autocorrelations under Schemes B, C, and D on DATA2, after the burn-in period.
Figure A.3: Autocorrelations under Schemes A, D and E on the Chandra X-ray data, after the burn-in period.

A.2 Autocorrelations Plots of the Monte Carlo Draws (Fig. A.1 – Fig. A.3)

B Auxiliary Material for Section 5

B.1 A Reducible Chain as a Result of Combining Two Transition Kernels (Fig. B.1)

B.2 Proof of Lemma 1

Proof. Let X be \mathcal{A}_1-measurable and Z be \mathcal{A}_2-measurable such that $0 < V[X - E(X|\mathcal{M})] < \infty$ and $0 < V[Z - E(Z|\mathcal{M})] < \infty$. Write $X - E(X|\mathcal{M}) = X_0 + X_\perp$ with $X_0 = E(X|\mathcal{N}) - E(X|\mathcal{M})$ and $X_\perp = X - E(X|\mathcal{N})$, and similarly for $Z - E(Z|\mathcal{N})$. Then X_0 and Z_0 are projections onto \mathcal{N} because $\mathcal{M} \subset \mathcal{N}$, and hence they both are \mathcal{N}-measurable, and

$$\text{Cov}(X_0, X_\perp) = \text{Cov}(X_0, Z_\perp) = \text{Cov}(Z_0, X_\perp) = \text{Cov}(Z_0, Z_\perp) = 0,$$

$$V(X_0 + X_\perp) = V(X_0) + V(X_\perp), \quad V(Z_0 + Z_\perp) = V(Z_0) + V(Z_\perp).$$

Consequently,

$$\text{Cov}(X_0 + X_\perp, Z_0 + Z_\perp) = \text{Cov}(X_0, Z_0) + \text{Cov}(X_\perp, Z_\perp) \leq \sqrt{V(X_0)V(Z_0)} + R_N(\mathcal{A}_1, \mathcal{A}_2)\sqrt{V(X_\perp)V(Z_\perp)},$$

by the definition of $R_N(\mathcal{A}_1, \mathcal{A}_2)$ as in (5.4). It follows that

$$\text{Corr}(X_0 + X_\perp, Z_0 + Z_\perp) \leq R_X R_Z + R_N(\mathcal{A}_1, \mathcal{A}_2)\sqrt{(1 - R_X^2)(1 - R_Z^2)},$$

(B.2)
Figure B.1: Alternating two irreducible Markov chains gives a reducible chain. The state space is \(\Omega = \{ I, J, K \} \), and the target distribution is \(\pi = (1/4, 1/4, 1/2) \). Left: transition probability specification (numbers on the arrows) of one chain. Middle: transition probabilities of a second chain with the same stationary distribution. Right: transition probabilities of the combined chain, which becomes reducible even though the original two chains are irreducible.

where (with a bit of abuse of notation)

\[
R_X = \sqrt{\frac{V(X_0)}{V(X_0 + X_\perp)}} \quad \text{and} \quad R_Z = \sqrt{\frac{V(Z_0)}{V(Z_0 + Z_\perp)}},
\]

where, without lose of generality, we have assumed \(V(X_0) > 0 \) and \(V(Z_0) > 0 \). By the simple inequality \(\sqrt{(1 - R^2_X)(1 - R^2_Z)} \leq 1 - R_X R_Z \), the right hand side of (B.2) is dominated by

\[
\mathcal{R}_{\mathcal{N}}(A_1, A_2) + [1 - \mathcal{R}_{\mathcal{N}}(A_1, A_2)] R_X R_Z.
\]

Noting \(X_0 + X_\perp = X - E(X|M) \) and \(X_0 = X_N - E(X_N|M) \), where \(X_N \equiv E(X|\mathcal{N}) \), we have

\[
R_X = \frac{\text{Cov}(X_0 + X_\perp, X_0)}{\sqrt{V(X_0 + X_\perp)V(X_0)}} \leq \mathcal{R}_{\mathcal{M}}(A_1, \mathcal{N}).
\]

Similarly \(R_Z \leq \mathcal{R}_{\mathcal{M}}(A_2, \mathcal{N}) \). The claim then follows. \(\square \)

B.3 Proof of Theorem 1

Proof. With the change of notation \(Y_{\text{mis},1} = Y_{\text{mis}} \), \(Y_{\text{mis},2} = \tilde{Y}_{\text{mis}} \), each iteration of GIS as defined in Section 2.3 can be represented by a directed graph, as in (2.13),

\[
\theta^{(t)} \longrightarrow Y_{\text{mis},1}^{(t)} \longrightarrow Y_{\text{mis},2}^{(t+1)} \longrightarrow \theta^{(t+1)}.
\]

That is, \(\theta^{(t)} \) and \(Y_{\text{mis},2}^{(t+1)} \) are conditionally independent given \(Y_{\text{mis},1}^{(t)} \), etc. Let us focus on the marginal chain \(\{ \theta^{(t)} \} \) and bound its spectral radius \(r_{1\&2} \):

\[
r_{1\&2} \leq \mathcal{R}(\theta^{(t)}, \theta^{(t+1)}) \leq \mathcal{R}(\theta^{(t)}, Y_{\text{mis},1}^{(t)}) \mathcal{R}(Y_{\text{mis},1}^{(t)}, Y_{\text{mis},2}^{(t+1)}) \mathcal{R}(Y_{\text{mis},2}^{(t+1)}, \theta^{(t+1)}), \tag{B.3}
\]

where we apply (5.6) twice for the last inequality. Under stationarity \(\mathcal{R}(\theta^{(t)}, Y_{\text{mis},1}^{(t)}) \) is the maximal correlation between \(\theta \) and \(Y_{\text{mis},1} \) in their joint posterior distribution, and likewise for \(\mathcal{R}(Y_{\text{mis},2}^{(t+1)}, \theta^{(t+1)}) \).
They are related to \(r_1 \) and \(r_2 \), the convergence rates of the two ordinary DA schemes via (see Liu et al. 1994, 1995)

\[
r_1 = \mathcal{R}^2(Y_{mis,1}^{(t)}, \theta^{(t)}), \quad \text{and} \quad r_2 = \mathcal{R}^2(\theta^{(t+1)}, Y_{mis,2}^{(t+1)}).\]

Under stationarity, the distribution of \(\{Y_{mis,1}^{(t)}, Y_{mis,2}^{(t+1)}\} \) is simply the joint posterior of \(\{Y_{mis,1}, Y_{mis,2}\} \) (with \(\theta \) integrated out). Hence Theorem 1 follows from (B.3).

B.4 Proof of Theorem 2

Proof. We use the same notation as in the proof of Theorem 1. Letting \(\mathcal{A} = \sigma(Y_{mis,1}^{(t)}) \cap \sigma(Y_{mis,2}^{(t+1)}) \), and applying Lemma 1, we get

\[
r_{1\&2} \leq \mathcal{R}(\theta^{(t)}, \theta^{(t+1)}) \leq \mathcal{R}_A(\theta^{(t)}, \theta^{(t+1)}) + (1 - \mathcal{R}_A(\theta^{(t)}, \theta^{(t+1)})) \mathcal{R}(\theta^{(t)}, \mathcal{A}) \mathcal{R}(\mathcal{A}, \theta^{(t+1)}) = \mathcal{R}^2(\theta, N) + (1 - \mathcal{R}^2(\theta, N)) \mathcal{R}_A(\theta^{(t)}, \theta^{(t+1)}).
\]

In the last equality, we have used the fact that under stationarity, \(\mathcal{R}(\mathcal{A}, \theta^{(t+1)}) = \mathcal{R}(\theta^{(t)}, \mathcal{A}) = \mathcal{R}(\theta, N) \).

Letting \(\mathcal{B} = \sigma(Y_{mis,1}^{(t)}) \), and applying Lemma 1 again, we get

\[
\mathcal{R}_A(\theta^{(t)}, \theta^{(t+1)}) \leq \mathcal{R}_B(\theta^{(t)}, \theta^{(t+1)}) + (1 - \mathcal{R}_B(\theta^{(t)}, \theta^{(t+1)})) \mathcal{R}_A(\theta^{(t)}, \mathcal{B}) \mathcal{R}(\mathcal{B}, \theta^{(t+1)}) = \mathcal{R}_A(\theta^{(t)}, Y_{mis,1}^{(t)}) \mathcal{R}(Y_{mis,1}^{(t)}, \theta^{(t+1)}),
\]

because \(\mathcal{R}_B(\theta^{(t)}, \theta^{(t+1)}) = 0 \) by conditional independence. Similarly, by taking \(\mathcal{B} = \sigma(Y_{mis,2}^{(t+1)}) \) and applying Lemma 1, we conclude

\[
\mathcal{R}_A(Y_{mis,1}^{(t)}, \theta^{(t+1)}) \leq \mathcal{R}_A(Y_{mis,1}^{(t)}, Y_{mis,2}^{(t+1)}) \mathcal{R}_A(Y_{mis,2}^{(t+1)}, \theta^{(t+1)}).
\]

Theorem 2 then follows from these three inequalities because, under stationarity, it is easy to show that \(\mathcal{R}_A(\theta^{(t)}, Y_{mis,1}^{(t)}) = \mathcal{R}_N(\theta, Y_{mis,1}^{(t)}) \), \(\mathcal{R}_A(Y_{mis,2}^{(t+1)}, \theta^{(t+1)}) = \mathcal{R}_N(Y_{mis,2}^{(t+1)}, \theta) \), and \(\mathcal{R}_A(Y_{mis,1}^{(t)}, Y_{mis,2}^{(t+1)}) = \mathcal{R}_N(Y_{mis,1}^{(t)}, Y_{mis,2}^{(t+1)}) \).

B.5 Proof of Theorem 3

Proof. To prove (5.11), we start by taking \(X = \theta^{(t)} = \{\theta_1^{(t)}, \ldots, \theta_J^{(t)}\} \), \(Z = \theta^{(t+1)} = \{\theta_1^{(t+1)}, \ldots, \theta_J^{(t+1)}\} \), and \(Y = \theta_1^{(t+1)} \), all with respect to the joint stationary distribution \(\{\theta^{(t)}, \theta^{(t+1)}\} \). We then apply the following version of the key inequality (5.8)

\[
S_W(X, Z) \geq S_Y(X, Z)[S_W(X, Y) + S_W(Y, Z) - S_W(X, Y)S_W(Y, Z)], \tag{B.4}
\]

where \(W \) is also a part of \(\{\theta^{(t)}, \theta^{(t+1)}\} \) such that \(\sigma(W) \subset \sigma(Y) \). Since \(Y \) is a part of \(Z \) and hence \(S(Y, Z) = 0 \), we first take a trivial \(W = 0 \) in (B.4) to arrive at

\[
S_{CIS} \equiv S(\theta^{(t)}, \theta^{(t+1)}) \geq S_{\theta_1^{(t+1)}}(\theta^{(t)}, \theta^{(t+1)})S(\theta^{(t)}, \theta_1^{(t+1)}). \tag{B.5}
\]
Keeping the same \(X \) and \(Z \), but now taking \(Y = \theta^{(t+1)}_{\leq 2} \) and \(W = \theta^{(t+1)}_1 \), we apply (B.4) again to obtain
\[
S_{\theta^{(t+1)}_1}(\theta^{(t)}, \theta^{(t+1)}_1) \geq S_{\theta^{(t+1)}_{\leq 2}}(\theta^{(t)}, \theta^{(t+1)}_1)S_{\theta^{(t+1)}_1}(\theta^{(t)}, \theta^{(t+1)}_1). \tag{B.6}
\]
Combining (B.5) and (B.6), we see
\[
S_{\text{CIS}} \geq S_{\theta^{(t+1)}_{\leq 3}}(\theta^{(t)}, \theta^{(t+1)}) \prod_{j=1}^{2} S_{\theta^{(t+1)}_{\leq j}}(\theta^{(t)}, \theta^{(t+1)}_{\leq j}). \tag{B.7}
\]
We continue the above argument by taking \(Y = \theta^{(t+1)}_{\leq k} \) and \(W = \theta^{(t+1)}_{<k} \), and applying (B.4) to \(S_{\theta^{(t+1)}_{<k}}(\theta^{(t)}, \theta^{(t+1)}_{\leq j}) \) for \(k = 3, \ldots, J - 1 \), to reach
\[
S_{\text{CIS}} \geq \prod_{j=1}^{J} S_{\theta^{(t+1)}_{\leq j}}(\theta^{(t)}, \theta^{(t+1)}_{\leq j}). \tag{B.8}
\]
To further factor each term on the right hand side of (B.8), let us first take \(X = \theta^{(t)}_2, Z = \theta^{(t+1)}_{\leq j}, Y = (\theta^{(t)}_{> j}, \theta^{(t+1)}_{< j}) \) and \(W = \theta^{(t+1)}_{< j} \), and apply (B.4) again. Note that as long as \(j < J \), \(S_{\theta^{(t+1)}_{< j}}(X, Y) = 0 \), and hence by (B.4), we have
\[
S_{\theta^{(t+1)}_{\leq j}}(\theta^{(t)}, \theta^{(t+1)}_{\leq j}) \geq S_Y(\theta^{(t)}, \theta^{(t+1)}_{\leq j})S_{\theta^{(t+1)}_{\leq j}}(Y, \theta^{(t+1)}_{\leq j}), \quad j = 1, \ldots, J - 1. \tag{B.9}
\]
To deal with the first term on the right-hand side of (B.9), we need the fact that if \(X_1 \) and \(Z_2 \) are conditionally independent given \(\{X_2, X_3, Z_1\} \), then
\[
S(\theta^{(t)}_{< j}, X_3, (\theta^{(t+1)}_{\leq j}, Z_2)) \geq S(\theta^{(t)}_{< j}, X_3, \theta^{(t+1)}_{\leq j}, Z_2). \tag{B.10}
\]
If we let \(X_1 = \theta^{(t)}_{< j}, X_2 = \theta^{(t)}_j, X_3 = \theta^{(t)}_{> j}, Z_1 = \theta^{(t+1)}_{< j}, \) and \(Z_2 = \theta^{(t+1)}_{\leq j} \), then we can apply (B.10) to \(S_Y(\theta^{(t)}, \theta^{(t+1)}_{\leq j}) \) because by construction, \(\theta^{(t+1)}_{\leq j} \) and hence \(\theta^{(t+1)}_{\leq j} \) is independent of \(\theta^{(t)}_{< j} \) when conditional on \(\theta^{(t+1)}_{\leq j} \). The output of the CIS sampler just before the \(j \)th component is updated, which is exactly \((\theta^{(t+1)}_{< j}, \theta^{(t)}_j, \theta^{(t)}_{> j}) \equiv \{Z_1, X_2, X_3\} \). Thus
\[
S_Y(\theta^{(t)}_{\leq j}, \theta^{(t+1)}_{\leq j}) \geq S_Y(\theta^{(t+1)}_{\leq j}, \theta^{(t+1)}_{\leq j}) \geq S_j, \quad j = 1, \ldots, J - 1, \tag{B.11}
\]
where \(S_j \) is defined by (5.10). The last inequality in (B.11) is due to the easily verifiable inequality \(S_M(\mathcal{A}_1, \mathcal{A}_2) \geq S_M(\mathcal{A}_1, \sigma(\mathcal{A}_2 \cup \mathcal{M})) \), and the fact that \(\sigma(Y) = \sigma_{j-1} \cap \sigma_j \) and \(\sigma(\sigma^{(t-1)}_{\leq j} \cup \sigma(Y)) = \sigma_j \).

For \(j = J \), (B.10) still applies as long as we take \(X_3 = \theta^{(t)}_{> j} = 0 \). It then becomes
\[
S_{\theta^{(t+1)}_{< j}}(\theta^{(t)}_j, \theta^{(t+1)}_{\leq j}) \geq S_{\theta^{(t+1)}_{< j}}(\theta^{(t)}_j, \theta^{(t+1)}_{\leq j}) = S_j. \tag{B.12}
\]
Combining (B.9), (B.11) and (B.12) leads to
\[
S_{\text{CIS}} \geq \left(\prod_{j=1}^{J} S_j \right) \left[\prod_{j=1}^{J-1} S_{\theta^{(t+1)}_{\leq j}}(\theta^{(t)}, \theta^{(t+1)}_{\leq j}) \right]. \tag{B.13}
\]
To show that \mathcal{S}_G, the second product on the right hand side of (B.13), is completely determined by π, we note that $(\theta_{<j}^{(t+1)}, \theta_{j}^{(t+1)}, \theta_{>j}^{(t)})$ is simply $\theta^{(t+1)}$ in (2.27), which follows π assuming the CI chain is stationary. We can write \mathcal{S}_G as in (5.12) because $\sigma(\theta_{<j}^{(t+1)}) = \sigma_{j-1} \cap \sigma_j$ and $\sigma(\theta_{>j}^{(t+1)}) = \sigma_{j-1} \cap \sigma_j$, $j = 1, \ldots, J$.

To show $\mathcal{S}_G \geq \hat{\mathcal{S}}_G$, we note that, stochastically, drawing $\theta_{<j}^{(t+1)}$ directly from its full conditional is the same as having $Y_{mis,j}$ and $\tilde{Y}_{mis,j}$ conditionally independent given $\theta_{<j}^{(t)}$ and $\theta_{>j}^{(t+1)}$. Hence $\mathcal{S}_G \geq \hat{\mathcal{S}}_G$ is a special case of (B.13) with $S_j = 1$ for all $j = 1, \ldots, J$.

To show $S_G = \hat{S}_G$ when $J = 2$, we first note that when $J = 2$, we have $S_G = 1 - R(\theta_1, \theta_2)$, where the MCC calculation is with respect to π (see Liu et al., 1994). However, by the definition of \hat{S}_G, we also have $S(\theta_1, \theta_2) = 1 - R(\theta_1, \theta_2)$, and the claim follows.

\section*{B.6 Proof of Theorem 4}

\textit{Proof.} Because Y_{mis} is sufficient for θ, we can write $p(Y_{obs}|Y_{mis}, \theta)$ as $g(Y_{obs}; Y_{mis})$. Similarly, because \tilde{Y}_{mis} is ancillary, we can write $p(\tilde{Y}_{mis}|\theta)$ as $f(\tilde{Y}_{mis})$. Then the joint posterior density of $(\theta, \tilde{Y}_{mis})$, with respect to the joint product measure of the Haar measure $H(\cdot)$ for θ and Lebesgue measure for \tilde{Y}_{mis}, is

\begin{equation}
p(\theta, \tilde{Y}_{mis}|Y_{obs}) \propto p(Y_{obs}|\tilde{Y}_{mis}, \theta)p(\tilde{Y}_{mis}|\theta)p(\theta) \\
\propto p(Y_{obs}|Y_{mis} = M^{-1}_{\theta}(\tilde{Y}_{mis}), \theta)p(\tilde{Y}_{mis}|\theta)p(\theta) \\
\propto g(Y_{obs}; M^{-1}_{\theta}(\tilde{Y}_{mis}))f(\tilde{Y}_{mis})p(\theta). \tag{B.14}
\end{equation}

Hence the conditional draw at Step 2A of the interwoven scheme is

$$\theta| \tilde{Y}_{mis}, Y_{obs} \sim p(\theta| Y_{obs}; M^{-1}_{\theta}(\tilde{Y}_{mis})). \tag{B.15}$$

Noting (B.14) and $Y_{mis} = M^{-1}_{\theta}(\tilde{Y}_{mis})$, the joint posterior of (θ, Y_{mis}) is

$$p(\theta, Y_{mis}|Y_{obs}) \propto p(\theta) f(M_{\theta}(Y_{mis}))g(Y_{obs}; Y_{mis})J(\theta, Y_{mis}),$$

where $J(\theta, Y_{mis}) = | \det [\partial M(Y_{mis}; \theta)/\partial Y_{mis}] |$. Hence the conditional draw at Step 2S of the interwoven scheme is

$$\theta| Y_{mis}, Y_{obs} \sim p(\theta)f(M_{\theta}(Y_{mis}))J(\theta, Y_{mis}). \tag{B.16}$$

Consider the PX–DA algorithm specified by the Theorem. According to Liu and Wu (1999), when Condition C1 is satisfied we can equivalently implement the optimal PX–DA algorithm (with the uniform prior density on α with respect to the Haar measure) as follows:

1. Set $\alpha = e$ (identity element of the group). Draw $Y_{mis}^\alpha|(\theta, Y_{obs})$, which is the same as Step 1 of ASIS. Let $z = Y_{mis}^\alpha$.

2. Draw $(\alpha, \theta)| (Y_{mis}^\alpha = z, Y_{obs})$ jointly. This can be accomplished by drawing $\alpha|(z, Y_{obs})$ and then $\theta|(\alpha, z, Y_{obs})$. We first observe that the joint posterior of (α, θ) can be expressed as

$$p(\alpha, \theta| Y_{mis}^\alpha, Y_{obs}) \propto p(Y_{obs}|Y_{mis}^\alpha, \alpha, \theta)p(Y_{mis}^\alpha|\alpha, \theta)p(\theta)p(\alpha). \tag{B.17}$$
Since $Y_{mis}^\alpha = M_\alpha(Y_{mis})$, we have

$$p(Y_{obs}|Y_{mis}^\alpha, \alpha, \theta) = p(Y_{obs}|Y_{mis} = M_\alpha^{-1}(Y_{mis}^\alpha), \alpha, \theta) = g(Y_{obs}; M_\alpha^{-1}(Y_{mis}^\alpha)).$$

(B.18)

But we also have $Y_{mis}^\alpha = M_\alpha(Y_{mis}) = M_\alpha(M_{\theta}^{-1}(\tilde{Y}_{mis})) = M_{\theta\alpha^{-1}}(\tilde{Y}_{mis})$. Therefore we may obtain $p(Y_{mis}^\alpha|\theta, \alpha)$ via $p(Y_{mis}|\theta) = f(\tilde{Y}_{mis})$. That is,

$$p(Y_{mis}^\alpha|\theta, \alpha) \propto f(M_{\theta\alpha^{-1}}(Y_{mis}^\alpha))J(\theta \cdot \alpha^{-1}, Y_{mis}^\alpha).$$

(B.19)

Substituting (B.18–B.19) into (B.17) and noting $p(\alpha) \propto 1$, we have

$$p(\alpha, \theta|z, Y_{obs}) \propto p_0(\theta)f(M_{\theta\alpha^{-1}}(z))g(Y_{obs}; M_{\alpha^{-1}}(z))J(\theta \cdot \alpha^{-1}, z),$$

where z is used as a shorthand for Y_{mis}^α. Now integrate out θ:

$$p(\alpha|z, Y_{obs}) \propto g(Y_{obs}; M_{\alpha^{-1}}(z)) \int p_0(\theta)f(M_{\theta\alpha^{-1}}(z))J(\theta \cdot \alpha^{-1}, z) H(d\theta)$$

(letting $\theta' = \theta \cdot \alpha^{-1}$)

$$\propto g(Y_{obs}; M_{\alpha^{-1}}(z)) \int p_0(\theta')f(M_{\theta'}(z))J(\theta', z) H(d\theta')$$

(by Condition C2)

$$\propto g(Y_{obs}; M_{\alpha^{-1}}(z)) p_0(\alpha) f(M_{\theta}(z)) J(\theta, z) H(d\theta').$$

(B.20)

On the other hand

$$p(\theta|\alpha, z, Y_{obs}) \propto p_0(\theta)f(M_{\theta\alpha^{-1}}(z))J(\theta \cdot \alpha^{-1}, z)$$

$$\propto p_0(\theta)f(M_{\theta}(M_{\alpha^{-1}}(z)))J(\theta, M_{\alpha^{-1}}^{-1}(z)),$$

which matches equation (B.16), i.e., $p(\theta|Y_{mis}, Y_{obs})$ for $Y_{mis} = M_{\alpha^{-1}}^{-1}(z)$.

In summary, when the current iterate is $\theta^{(t)}$, the steps of PX-DA are

Step 1. Same as Step 1 of ASIS.

Step 2a. Let $z = Y_{mis}$, and draw $\alpha(z, Y_{obs})$ according to (B.20).

Step 2b. Let $\theta' = M_{\alpha^{-1}}^{-1}(z)$, and draw $\theta^{(t+1)} \sim p(\theta|Y_{mis} = z', Y_{obs})$.

Put $\alpha' = \theta^{(t)} \cdot \alpha$. Based on (B.20), Step 2a is equivalent to drawing α' according to

$$p(\alpha'|z, Y_{obs}) \propto g(Y_{obs}; M_{\alpha'-1, g(t)}(z)) p_0([\theta^{(t)}]^{-1} \cdot \alpha')$$

$$\propto g(Y_{obs}; M_{\alpha'-1}(w)) p_0(\alpha'),$$

(B.21)

where $w = M_{\theta^{(t)}}(z)$. Note this w is the same as \tilde{Y}_{mis} in Step 2A of ASIS, because $z = Y_{mis}$. Observe that (B.21) matches $p(\theta|\tilde{Y}_{mis} = w, Y_{obs})$ of (B.15) when we equate θ with α'. Therefore if we correspond α' with $\theta^{(t+5)}$, which is the output of Step 2A of ASIS, then Step 2a is the same as Step 2A. Furthermore, with $\alpha' = \theta^{(t+5)}$, in Step 2b $z' = M_{\alpha^{-1}}^{-1}(z) = M_{\alpha^{-1}}^{-1}(w) = Y_{mis}$, and we can draw an exact correspondence between Step 2b of PX-DA and Step 2S of ASIS as well. (Note here the Step 2a and Step 2S are in the reversed order, if we match the notation with that for GIS, as defined in Section 2.2; but recall the order does not affect the validity.)
C Auxiliary Material for Section 6

The following example illustrates both the relevance and the limitations of Theorem 4. Consider the univariate t model, a well known model for which PX–DA can be applied. We observe $Y_{\text{obs}} = (y_1, \ldots, y_n)$, where

$$y_i \overset{\text{ind}}{\sim} N(\mu, \sigma^2/q_i), \quad q_i \overset{\text{i.i.d.}}{\sim} \chi^2_\nu/\nu.$$

The parameters are $\theta = (\mu, \sigma)$ and the missing data are $q = (q_1, \ldots, q_n)^\top$. The degree of freedom ν is assumed known. Assume the standard flat prior on $(\mu, \log(\sigma))$. By introducing a parameter α, this model can be expanded into

$$y_i \overset{\text{ind}}{\sim} N(\mu, \alpha \sigma^2/w_i), \quad w_i \overset{\text{i.i.d.}}{\sim} \alpha \chi^2_\nu/\nu,$$

where $w_i = \alpha q_i$. Each iteration of the optimal PX–DA algorithm (see Liu and Wu 1999, and Meng and van Dyk 1999) can be written compactly as

1. Draw $q_i \sim \chi^2_{\nu+1}/[(y_i - \mu)^2/\sigma^2 + \nu]$, independently for $i = 1, \ldots, n$;
2. Compute $\hat{\mu} = \sum_{i=1}^n q_i y_i / \sum_{i=1}^n q_i$, and then draw
 $$\sigma^2 \sim \left[\sum_{i=1}^n q_i (y_i - \hat{\mu})^2 \right] / \chi^2_{n-1}, \quad \mu \sim N\left[\hat{\mu}, \sigma^2 / \sum_{i=1}^n q_i \right];$$
3. Redraw $\sigma^2 \sim \sigma^2 \chi^2_{\nu \nu} / (\nu \sum_{i=1}^n q_i)$.

These three steps are simply the following conditional draws under the original model:

1. $q|(\mu, \sigma, Y_{\text{obs}})$;
2. $(\mu, \sigma)|(q, Y_{\text{obs}})$;
3. $\sigma|(\mu, z, Y_{\text{obs}})$, where $z = (z_1, \ldots, z_n)^\top = (q_1/\sigma^2, \ldots, q_n/\sigma^2)^\top$.

In other words, Step 1 draws q, the missing data, given $\theta = (\mu, \sigma)$; Step 2 draws θ given q, which is an AA for θ; and Step 3 draws σ given z, which is an SA for σ. If we focus on σ, ignoring the part for μ, then the above algorithm is exactly an ASIS sampler for σ; just as Theorem 4 claims, it coincides with the optimal PX–DA algorithm. However, because z is not an SA for μ, this scheme does not correspond to an ASIS for (μ, σ) as a whole. This suggests that there may be a generalization of Theorem 4 that deals with a form of conditional ASIS. Such results would also shed light on optimality properties of CIS, or reveal an even better formulation.