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Rejoinder: Be All Our Insomnia
Remembered. . .

Yaming YU and Xiao-Li MENG

1. DREAM ON: FROM DA TO GIS TO CIS

1.1 PARALLEL DREAMS

The evolutionary history from DA to GIS and more generally to CIS may well be cited
by a future Stephen Stigler to advance a new Stigler’s Law: “No scientific idea is origi-
nated from a single team.” Putting aside the well-known connection between EM and DA
(see Tanner and Wong 2010; van Dyk and Meng 2010), we have witnessed how the idea
of introducing a non-identifiable parameter into DA schemes—for the purpose of better
algorithmic efficiency—was independently and simultaneously developed by two research
teams (Liu and Wu 1999 and Meng and van Dyk 1999). Subsequently, the idea of uti-
lizing or combining multiple DA schemes has been pursued by (at least) three teams,
from seemingly different angles. Roberts and Papaspiliopoulos’s team has been investi-
gating the partially non-centered parameterization (see, e.g., Papaspiliopoulos, Roberts,
and Sköld 2007), whose power and versatility are nicely illustrated by the discussion by
Papaspiliopoulos, Roberts, and Sermaidis (PRS). The idea of partially non-centering is to
introduce a tuning parameter w into the non-centering scheme (i.e., a DA scheme) and then
seek its optimal value for the fastest convergence. It is therefore equivalent to the condi-
tional augmentation approach (Meng and van Dyk 1999; van Dyk and Meng 2001), where
w is known as a working parameter and is determined by the same optimality criterion; of-
ten the optimality calculations are approximate because exact optimality is hard to achieve
in practice.

This conditional augmentation approach—meaning the algorithm is conditional upon
a fixed value of the working parameter—contrasts with the marginal augmentation ap-
proach (Meng and van Dyk 1999), where the working parameter is marginalized out after
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being assigned a working prior. The marginal augmentation approach, also known as the
parameter-expanded DA (PX-DA; Liu and Wu 1999), has resulted in some intriguing find-
ings. For example, a great theoretical result established by Liu and Wu (1999) is that,
under certain regularity conditions, the optimal working prior is the (typically improper)
right Haar measure. Consequently, the resulting Markov chain is typically nonpositive re-
current on the joint space of the desired target and the working parameter, since the latter
is not identifiable given the observed-data model. Yet, this nonpositive recurrent Markov
chain contains a properly converging subsequence (to be more precise, sub-subsequence;
see Hobert 2001a, 2001b). Not only is its stationary distribution our target distribution, it
also has the fastest convergence rate among a general class of DA algorithms as defined by
Liu and Wu (1999) via an elegant group theory formulation.

Such theoretically fascinating and practically useful algorithms have caused much in-
somnia for those of us who want to understand them fully, in order to make them as gen-
erally applicable as possible. Whereas the number of sandwiches Hobert’s team indulged
during their insomnia can only be speculated, the theoretical insight provided by their
“sandwiched” unification (Hobert and Marchev 2008) is unquestionable. Indeed, when we
first learned about the sandwich formulation, we were struggling to understand another
intriguing phenomenon. That is, why can the typically simple ASIS/GIS perform as well
as marginal augmentation, whose construction requires more sophistication comparatively
(e.g., most improper working priors will lead to incorrect algorithms; see Meng and van
Dyk 1999)? However, as succinctly formulated in Hobert and Román’s (HR) discussion,
the sandwich algorithms themselves are “sandwiched” between DA and GIS, providing the
missing link we sought in the big picture.

Our own work on ASIS/GIS started with the thesis of Yu (2005), where the interweaving
strategy was invented to deal with a Chandra X-ray dataset, as detailed in our main article.
Soon, however, we realized that it is not merely a trick for one particular problem, but rather
a general strategy for addressing the much debated question: to center or not to center. This
realization was exciting, but our earlier report (Yu and Meng 2007) did not have enough
theoretical muscles, at least not the type routinely found in the work of Hobert’s team
or Roberts’ team. Despite our suggestive empirical demonstrations, how can we be sure
that they are not another demonstration of the wisdom that “simulations are doomed to be
successful”?

1.2 PROGRESSIVE INSIGHTS

The rejection of our initial article (by another journal) led to our own insomnia—what is
the correct theoretical explanation for the apparent, sometimes dramatic, empirical gains?
After much searching, we had to laugh at ourselves because the answer was already in
the proof of the old theorem 1 of Yu and Meng (2007), where we conveniently bound
the maximal correlation R1,2 in the current Theorem 1 by its upper bound, that is, 1. We
thus “conveniently” deprived ourselves of the theoretical insights this maximal correlation
can offer! In other words, the magic of interweaving comes from its built-in potential for
“breaking the link” via conditional independence as measured by R1,2 or its conditional
variants (see Theorems 2 and 3 in our main article, as well as Romanovič 1975 and Huang
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Figure 1. Comparing DA iterative schemes with a GIS iterative scheme.

2010 for closely related definitions, which we came across after finishing our main article).
This is perhaps best seen from Figure 1, which compares ordinary DA algorithms with GIS,
using the generic notation of our main article.

As seen from Figure 1, each iteration of GIS cycles through the parameter θ and the
two sets of augmented data by first drawing Ymis given θ , then Ỹmis given Ymis, and then
θ given Ỹmis. (Henceforth we suppress the conditioning on the observed data Yobs when
there is no confusion.) Hence two consecutive draws of θ would be independent if Ymis

and Ỹmis are conditionally independent given Yobs (or in HR’s notation, the targeted chain
on X (= θ) would produce i.i.d. draws, if Y and Ỹ are independent). In general, the
weaker the dependence between Ymis and Ỹmis, the better the efficiency we expect from
GIS. HR’s formulation of our Theorem 1, by explicitly introducing a Markov transition
function Q(Ymis, Ỹmis), makes this point even clearer. In particular, in the original sand-
wich algorithms, (θ, Ymis) and (θ, Ỹmis) have the same joint distribution. Consequently, as
HR pointed out, the Q function becomes their reversible R transition function, which de-
fines a Markov chain on the Ymis space (the same as the Ỹmis space in this case) with R1,2

being its convergence rate. Therefore, the key inequality in our Theorem 1, as nicely re-
expressed by HR’s inequality (1.8), demonstrates that the faster this Ymis chain converges,
the more we can expect the sandwiched chain or more generally the GIS chain to con-
verge. Note that we only say that “the more we can expect” because R1,2 enters as part of
an upper bound, rather than an exact formula, of the actual convergence rate.

The diagram for GIS in Figure 1 also illustrates another theoretical insight of HR’s that
we “conveniently” overlooked. HR pointed out that although our Theorem 1 assumed a
three-way joint distribution for {Ymis, Ỹmis, θ} via the conditional distribution of (Ymis, Ỹmis)

given both θ and Yobs, our proof never used this assumption. What actually is needed are
only the three two-way joint distributions, namely p(θ,Ymis), p(θ, Ỹmis), and p(Ymis, Ỹmis).
But they may not be compatible with each other, that is, there may not exist a three-way
joint distribution on {Ymis, Ỹmis, θ} whose three two-way margins are given by them. The
GIS diagram in Figure 1 clearly shows that all moves only require specifications of the
two-way distributions.
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For mathematicians, unnecessary assumptions are often a telltale sign of incompetency.
But as statisticians we wondered about other reasons for us to have overlooked this issue.
The answer came when we asked ourselves whether the restrictive GIS class of algorithms,
as defined by requiring the existence of a three-way joint distribution, forms a “complete
class” within the more general class of algorithms as recognized by HR, that is, given
the original DA schemes p(θ,Ymis) and p(θ, Ỹmis), whether any algorithm in the general
class is matched by one in the restrictive class in terms of convergence rate. The answer
is negative, because in the general class, we can always make Ymis and Ỹmis independent
by imposing p(Ymis, Ỹmis) = p(Ymis)p(Ỹmis), where p(Ymis) and p(Ỹmis) are respectively
the Y -margins of the original DA specifications p(θ,Ymis) and p(θ, Ỹmis). Thus, the re-
sulting GIS will produce i.i.d. draws for reasons discussed previously. In the restrictive
class, however, we do not have the freedom to arbitrarily specify the dependence between
Ymis and Ỹmis because the dependence is determined by the three-way joint distribution
p(Ymis, Ỹmis, θ), and hence the resulting GIS does not produce i.i.d. draws except in spe-
cial cases such as the toy model in our main article.

The above observation might excite a casual reader—does this mean that, by using the
unrestrictive GIS class, we can routinely produce i.i.d. draws? If true, that of course would
be a paradise for everyone (with the possible exception of those who have invested their
lives in developing MCMC algorithms). However, in order to implement GIS, we need to
be able to make draws from the conditional distribution p(Ỹmis|Ymis) (or from p(Ymis|Ỹmis)

by reversing the cycle in Figure 1). Therefore, by making Ỹmis and Ymis independent, we
effectively have committed ourselves to drawing directly from p(Ỹmis). But if we were
able to do so, then we would not need any MCMC, because given the drawn Ỹmis from
p(Ỹmis), we can directly obtain a desired sample of θ by drawing from p(θ |Ỹmis), a step
that is already required by the original DA algorithm.

As shown in our main article, for our restrictive GIS class, the sampling from
p(Ỹmis|Ymis) is accomplished by first sampling from p(θ |Ymis), which again is already re-
quired by the original DA algorithm. We then sample from p(Ỹmis|θ,Ymis), which is often a
trivial step (e.g., a deterministic evaluation), but nevertheless it requires a legitimate three-
way specification p(θ,Ymis, Ỹmis). In other words, the theoretically unnecessary three-way
compatibility assumption for our Theorem 1 was actually a practical necessity for realizing
the gain in efficiency of GIS in all the examples in our article, which perhaps explains (as
an afterthought of course) why it did not occur to us to abandon the three-way distribution
requirement in Theorem 1. HR’s insight on expanding our GIS class therefore suggests
a new task: seeking a GIS class that does not require three-way compatibility, yet is still
implementable. Part of the difficulty, of course, lies in an old thorny problem: how do we
quantify implementability, which is problem-dependent?

2. STATISTICAL AMBIEN FOR MCMC INSOMNIA

2.1 TWO WAYS TO BREAK THE CYCLE

As discussed above, partially non-centering is equivalent to conditional augmentation,
whereas the interweaving strategy, especially ASIS, has close ties with marginal augmen-
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tation. It has long been noticed that, in some simple cases, both approaches can achieve

i.i.d. algorithms, as demonstrated by PRS’s and HR’s normal examples, and yet they do

not dominate each other in either the EM or MCMC context (see Meng and van Dyk 1997,

1999; van Dyk and Meng 2010). Part of our past insomnia stemmed from a desire to under-

stand the connection between the two approaches, and to formulate practical guidelines.

We are happy to report that the GIS diagram in Figure 1 as applied to PRS’s/HR’s example

finally provides the Ambien we have been looking for.

Specifically, in both examples the authors started with a centered/sufficient augmenta-

tion, (θ, Ymis). They then created a partially non-centered augmentation by letting Ỹmis =
Ymis − wθ , to use PRS’s notation (corresponding to HR’s c = −w). The question is how

to choose w. Let us apply the GIS diagram in Figure 1 to the current setting. Given the

original augmentation as represented by the arrow from θ to Ymis, we have two choices of

w to break the cycle, as depicted in Figure 2. The first is to make Ỹmis independent of θ

and hence to break the Ỹmis → θ link, which is what the partially non-centering or condi-

tional augmentation approach aims to achieve. The second is to choose w such that Ỹmis

is independent of Ymis, thereby breaking the Ymis → Ỹmis link, which is what the marginal

augmentation and ASIS (and more generally GIS/CIS) approaches try to accomplish. This

is also nicely depicted by PRS’s Figure 2, which conveys more geometric insight than the

Figure 1 in our main article. The two classes of methods are therefore not directly com-

parable, since they are designed to break different links, although they share the ultimate

goal.

This explains why in HR’s example (in their Section 2.1) there are two choices of w =
−c that lead to i.i.d. draws. If our aim is to break the Ỹmis → θ link, that is, to reduce as

much as possible the dependence between Ỹmis and θ , then an intuitive approach is to set

Ỹmis equal to the part of Ymis not explained by θ . That is, we should make Ỹmis = Ymis −wθ

Figure 2. Two ways to reduce dependence. The �→ operation indicates the potential for breaking the corre-
sponding link. Note that conditional augmentation alternates between θ and Ỹmis only.
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(a function of) the residual from regressing Ymis on θ , that is,

w = cov(θ, Ymis|Yobs)

V(θ |Yobs)
= cov(θ,E[Ymis|θ,Yobs]|Yobs)

V(θ |Yobs)
. (2.1)

For HR’s example (as well as for PRS’s example), noticing

E[Ymis|θ,Yobs] = 1

1 + V
θ + V

1 + V
Yobs,

we have from (2.1)

w = 1

1 + V

cov(θ, θ |Yobs)

V(θ |Yobs)
= 1

1 + V
.

This result provides a theoretical insight into why the optimal partially non-centering
scheme is given by w = (V + 1)−1 for PRS’s example, and why c = −w = −(V + 1)−1

is the first value in HR’s example to render i.i.d. draws. In the latter case, it is not because
the interweaving strategy is effective (note that HR interweave Ỹmis with Ymis regardless
of whether Ỹmis is already optimal by itself); rather, one of the two DA schemes being
interwoven, (θ, Ỹmis), already provides i.i.d. draws. Recall our Theorem 1 says, in HR’s
notation, that ‖KYM‖ = 0 whenever ‖K̃DA‖ = 0.

On the other hand, if our aim is to break the Ymis → Ỹmis link, then we need to make
Ỹmis (a function of) the residual from regressing θ on Ymis. This can be achieved by noting
that Ỹmis = −w(θ − w−1Ymis), and hence w−1 should be the regression coefficient from
regressing θ on Ymis, that is,

w = V(Ymis|Yobs)

cov(θ, Ymis|Yobs)
= V(Ymis|Yobs)

cov(E[θ |Ymis, Yobs], Ymis|Yobs)
. (2.2)

For HR’s example,

E[θ |Ymis, Yobs] = E[θ |Ymis] = A

A + V
Ymis, (2.3)

where the first equality holds because Ymis is a sufficient augmentation. We have from (2.2)
that

w = V(Ymis|Yobs)

A/(A + V ) cov(Ymis, Ymis|Yobs)
= 1 + V

A
,

which yields the second c = −w = −V/A − 1 reported by HR that leads to i.i.d. draws.

2.2 RESIDUAL AUGMENTATION

Although the exact results in the last section are harder to obtain without joint normal-
ity, they suggest some general guidelines. The most important insight is that the choice of
Ỹmis should form a residual in the posterior space p(Ymis, θ |Yobs) (for non-Bayesian com-
putations, we follow HR’s more general notation f (X,Y )). What type of residuals to use
depends on whether we plan to use partially non-centering (i.e., conditional augmentation)
or the interweaving strategy. In the former case we should consider

Ỹmis = Ymis − E[Ymis|θ,Yobs], (2.4)
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whereas in the latter case we should aim for

Ỹmis = θ − E[θ |Ymis, Yobs]. (2.5)

A couple of remarks are in order. First, both (2.4) and (2.5) only involve condi-
tional mean calculations with respect to the two original DA full conditionals, namely
p(Ymis|θ,Yobs) and p(θ |Ymis, Yobs). Therefore, at least in principle, both can be calcu-
lated or approximated analytically. This, however, is not enough because in order to im-
plement the resulting algorithm, we need to be able to sample from p(θ |Ỹmis, Yobs) and
from p(Ỹmis|θ,Yobs) effectively. For (2.4), a possible general strategy is to find a linear
approximation of the form

E[Ymis|θ,Yobs] ≈ α + βθ, (2.6)

where α and β are known quantities but they can depend on Yobs. We then let

Ỹmis = Ymis − βθ, (2.7)

which approximately eliminates the posterior correlation between θ and Ỹmis. In other
words, w = β is an approximately optimal working parameter. The specification of the
joint distribution of (θ, Ỹmis) (given Yobs) then follows a simple linear transformation of
(θ, Ymis). Again, this does not automatically imply that sampling from p(θ |Ỹmis, Yobs) is
as easy as sampling from the original p(θ |Ymis, Yobs), but the empirical evidence so far
suggests that it is often manageable. When this simple approximation is inadequate and
we cannot effectively implement the DA algorithm based on (2.4), it should serve as a
warning sign that reducing the dependence between θ and Ỹmis is not fruitful for the prob-
lem at hand. Hence it may help to consider the alternative strategy, namely, reducing the
dependence between Ymis and Ỹmis via (2.5).

Second, the residual augmentation given by (2.4) does not depend on the prior for θ ,
which explains why the same c = −(V + 1)−1 leads to i.i.d. draws regardless of the value
of the prior variance A in HR’s example. This is an advantage of conditional augmentation
(i.e., partially non-centering), for once we identify a good partially non-centering scheme,
we can expect its performance to be robust to the prior specification of θ . (Note we only
say “robust to,” not “invariant to” because the invariance result in HR’s example relies on
the normality assumption; in general the lack of correlation between θ and Ỹmis does not
imply independence.) In contrast, the augmentation (2.5) in general depends on the prior
for θ . This explains why ASIS does not produce i.i.d. draws in HR’s example when an
informative prior is used, because both the sufficient and ancillary schemes are defined
without involving the prior on θ .

2.3 THE ROLES OF SUFFICIENCY AND ANCILLARITY

A reader then may naturally ask: what is the role of sufficiency and ancillarity in break-
ing the Ymis → Ỹmis link? This was indeed a cause of much of our insomnia. The beauty
of ASIS, as noted by several discussants, is its conceptual simplicity, rooted in the famil-
iar classical notions, and its ease in implementation, mostly repeating existing steps in a
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certain order. Kelly’s statement “These qualities of ASIS are attractive to me as an as-
trophysicist, because I spend most of my time doing astrophysics research, not designing
MCMC samplers.” is a great reminder to all MCMC designers of the importance of keep-
ing things simple. However, just as to teach intuitively requires one to understand deeply,
for us as the designer we want to fully understand why and when certain algorithms work.
Our initial intuition, as documented in our main article, came from the classical Basu’s
theorem. But Basu’s theorem is about the independence between sufficient and ancillary
statistics in the sampling model, not in the posterior model as we need; this mismatch has
indeed given us some midnight sweats.

In Section 2.4 of our main article, we have examined this issue assuming that θ and Ymis

are one-to-one given Ỹmis. Under this assumption, the sufficiency of Ymis and the ancillarity
of Ỹmis allow us to write

p(Ỹmis, Ymis|Yobs) ∝ p(Yobs|Ymis)p(Ỹmis)�(Ỹmis, Ymis), (2.8)

with

�(Ỹmis, Ymis) = J (Ỹmis, Ymis)p(θ(Ỹmis, Ymis)), (2.9)

where θ(Ỹmis, Ymis) is the map from Ymis to θ (with Ỹmis fixed) as determined by Ỹmis =
M(Ymis; θ), and J (Ỹmis, Ymis) is the corresponding Jacobian given by (2.23) in our main
article.

Therefore, what ASIS achieves is to separate Ỹmis and Ymis in the first two terms on the
right side of (2.8). If the � function is also separable in the sense of taking a product form
�(Ỹmis, Ymis) = �1(Ỹmis)�2(Ymis), then Ỹmis and Ymis will be independent conditional on
Yobs, thereby breaking the Ymis → Ỹmis link.

Of course, in general �(Ỹmis, Ymis) is not perfectly separable, but it tends to be so
when the prior is weak, as demonstrated in Section 2.4 of our main article. We note that
�(Ỹmis, Ymis) is determined by only two factors: the map Ỹmis = M(Ymis; θ) and the prior
p(θ), neither of which involves Yobs. When the relationship between Ỹmis and Ymis is strong
given θ , (2.9) explains why ASIS may not do too well when the prior is also strong (but see
below), because then �(Ỹmis, Ymis) would be far from being separable, resulting in strong
posterior dependence between Ỹmis and Ymis.

In contrast, the residual augmentation (2.5) eliminates at least the posterior (Pear-
son) correlation by regressing out the impact of the prior via choosing Ỹmis = θ −
E(θ |Ymis, Yobs), which reduces to Ỹmis = θ − E(θ |Ymis) when Ymis is sufficient. For a clear
comparison, let us denote MR(Ymis; θ) = θ − E(θ |Ymis) and define MA(Ymis; θ) as the
aforementioned map for the ancillary augmentation. That is, the difference between resid-
ual augmentation and ASIS is that the former uses Ỹmis = MR(Ymis; θ) whereas the latter
uses Ỹmis = MA(Ymis; θ).

If statistical efficiency is the only consideration, then it would be sensible to only use
MR(Ymis; θ). However, an astute reader may have noticed that whereas Ỹmis of (2.4) is of
the same dimension as the original Ymis, the Ỹmis of (2.5) is of the same dimension as θ ,
which can be very different from that of Ymis. Hence the derivation of p(θ |Ỹmis) with Ỹmis =
MR(Ymis; θ) can be complicated because Ỹmis is typically not a one-to-one transformation
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of Ymis given θ . In contrast, the ancillary augmentation MA(Ymis; θ) is often a one-to-one
map of Ymis given θ , making it significantly easier to derive the conditional distribution of
θ given the ancillary augmentation. The price we pay for this ease of implementation is
reflected by the posterior dependence of Ymis and Ỹmis, which in the simple case of (2.9) is
captured by the � function.

However, when the prior is not strong, the following heuristic argument suggests that
MA(Ymis; θ) may serve as a reasonable approximation to MR(Ymis; θ). The theory of Meng
and Zaslavsky (2002) says that for many commonly used likelihoods with SOUP (single
observation unbiased prior), a type of noninformative prior (e.g., a constant prior for a lo-
cation parameter), the posterior mean θ̂ (Ymis) = E(θ |Ymis) is unbiased for θ . Consequently,

E[MR(Ymis; θ)|θ ] = θ − E[θ̂ (Ymis)|θ ] = θ − θ = 0 for all θ ∈ �. (2.10)

This of course does not imply Ỹmis = MR(Ymis; θ) is ancillary, but it does rule out any Ỹmis

that is not first-order ancillary, that is, whose mean depends on θ .
In general, we do not expect (2.10) to hold exactly, but the above derivation suggests

that the use of ancillary augmentation may be viewed as a compromise between ensuring
easy implementation and our desire to use (2.5)—or any of its variations such as (2.15)
discussed below—that aims to break the Ymis → Ỹmis link. For instance, in HR’s example,
because of (2.3), the optimal residual augmentation for GIS is

MR(Ymis; θ) = θ − A

A + V
Ymis,

which is increasingly better approximated by the ancillary augmentation MA(Ymis; θ) =
θ − Ymis as A/V → ∞, that is, as the prior becomes weak.

Even when MA(Ymis; θ) is not a good approximation to MR(Ymis; θ), our ASIS algo-
rithm may still converge relatively fast because of the built-in robustness of ASIS/GIS as
theoretically established in our main article. In HR’s example mentioned above, the joint
normality of {θ,Ymis, Yobs} makes it easy to obtain the convergence rates for sufficient
augmentation (SA), ancillary augmentation (AA), and ASIS, which are respectively

rSA = A

(V + A)(V + 1)
, rAA = AV

(V + 1)(A + 1)
,

(2.11)

rASIS = AV

(V + 1)(A + 1)(V + A)
.

These expressions reveal that both rSA and rAA can get arbitrarily close to 1 on their own,
yet rASIS ≤ 1/8 for any combination of A and V , with equality if and only if A = V = 1.
That is, the worst rate of convergence of ASIS is 0.125 in this example. Furthermore,
because

R1,2 = Corr(Ỹmis, Ymis|Yobs) =
√

V

(A + 1)(V + A)
, (2.12)

we have R1,2 → 1 as A → 0, that is, the choice of Ỹmis = θ − Ymis fails to break the
Ymis → Ỹmis link. Nevertheless, ASIS does not fail. On contrary, we have rASIS → 0 as
A → 0 because rSA → 0 and rAA → 0 (in fact one of them suffices to ensure rASIS → 0).



612 Y. YU AND X.-L. MENG

This again shows the power of ASIS/GIS—in order for it to converge quickly, we only
need one of R1,2, r1, and r2 to be small, where r1 and r2 denote the convergence rates of
the two DA schemes being interwoven.

2.4 FLEXIBILITY IN CONSTRUCTING RESIDUAL AUGMENTATIONS

Various strategies adopted in our main article for forming ancillary augmentations turn
out to be also suggestive for forming residual augmentations. For example, the use of the
standard residual Ymis − wθ is implicitly driven by the usual least squares formulation
with additive residuals. For a multiplicative model with positive Ymis and positive θ (let
us assume that both are scalars for simplicity), we can form the multiplicative counterpart
of (2.4) as

Ỹmis = Ymis

E[Ymis|θ,Yobs] . (2.13)

For any b(θ) such that the relevant expectations are finite, we have

E

[
Ymisb(θ)

E[Ymis|θ,Yobs]
∣∣∣Yobs

]
= E

[
E[Ymis|θ,Yobs]b(θ)

E[Ymis|θ,Yobs]
∣∣∣Yobs

]
= E[b(θ)|Yobs]. (2.14)

By taking b1(θ) = θ and then b2(θ) = 1 in (2.14), we can easily verify that

cov(Ỹmis, θ |Yobs) = E[b1(θ)|Yobs] − E[b2(θ)|Yobs]E[θ |Yobs] = 0.

That is, like the additive residual (2.4), the multiplicative residual (2.13) is also uncorre-
lated with θ . Similarly, we can establish that the multiplicative counterpart of (2.5), that
is,

Ỹmis = θ

E[θ |Ymis, Yobs] , (2.15)

is uncorrelated with Ymis. (Note again that when Ymis is a sufficient augmentation, the
above becomes Ỹmis = θ/E[θ |Ymis].) In our main article, we have shown how ancillary
augmentation schemes are often formed by recentering and/or rescaling (including rotat-
ing) a sufficient augmentation Ymis. The additive and multiplicative residual formulations
here further explain why such strategies have been successful.

Going beyond the additive and the multiplicative, we can also consider various trans-
formations of {θ,Ymis} before forming the residual augmentation Ỹmis. Suitably chosen
transformations are likely to produce practically important gains when the joint posterior
p(θ,Ymis|Yobs) is far from normal. As discussed earlier, our goal is to reduce the depen-
dence between θ and Ỹmis (for conditional augmentation) or between Ymis and Ỹmis (for in-
terweaving). Using the additive residual forms in (2.4) or in (2.5) achieves this when joint
normality holds (approximately) for (θ, Ymis). This suggests that for arbitrary (θ, Ymis), it
may be worthwhile to consider one-to-one transformations in the form of θ∗ = g(θ) and
Y ∗

mis = h(Ymis) to bring the resulting joint distribution (θ∗, Y ∗
mis) closer to normality before

constructing the residual in (2.4)

Ỹ ∗
mis = Y ∗

mis − E[Y ∗
mis|θ∗, Yobs] = h(Ymis) − E[h(Ymis)|θ,Yobs], (2.16)



REJOINDER 613

or in (2.5)

Ỹ ∗
mis = θ∗ − E[θ∗|Y ∗

mis, Yobs] = g(θ) − E[g(θ)|Ymis, Yobs]. (2.17)

These transformations do not alter the original DA algorithm since they are one-to-one and
are applied separately, though a price we pay for this simplicity is that the degree of joint
normality we hope to achieve may never be reachable with separate transformations on the
margins. Moreover, for discrete Ymis, such as the restricted Boltzmann machine discussed
by Wu, one-to-one transformation to normality is plainly impossible. Fortunately, Roberts’
team has come up with a number of innovations to deal with discrete augmentations, as
discussed in Section 2.6 of our main article and further by PRS, their Poisson example
being particularly instructive.

3. MORE INSOMNIA AND NEEDING INCEPTION

While many theoretical questions remain, more insomnia is likely caused by practical
issues. One important issue, as highlighted both by our main article and by PRS’s discus-
sion, is the balance between computing time per iteration and the convergence rate, that
is, computational efficiency versus statistical efficiency. Convergence rate may be subject
to theoretical analysis; computing time per iteration, however, depends on the model, the
particular dataset, the programming, and the computer being used. PRS suggested the ad-
justed effective sample size, a concept similar to the precision per CPU measure used by
Kong et al. (2003). A nice illustration was provided by PRS in their Section 6 in the con-
text of Bayesian inference for discretely observed diffusions. In that example, the centered
(respectively, non-centered) scheme performs better when n, the number of data points,
is large (respectively, small). The interweaving strategy initially performs better than both
the centered and non-centered schemes, but as n becomes very large, it lags behind the
centered scheme, presumably because the improvement in convergence rate can no longer
offset the increase in computing time per iteration.

A related issue is the use of Metropolis-within-Gibbs, which is common as illustrated
by both PRS and Kelly. How should such Metropolis–Hastings (M-H) steps be tuned, that
is, what is the ideal acceptance rate? Recall that our theoretical investigations focus on the
case when each conditional draw of the interweaving strategy is available in closed form.
The intuition for ASIS relies on this implicitly. Therefore it seems that the acceptance rates
at such M-H steps should be made to be reasonably large. But higher M-H acceptance
rates often entail more computing time. Therefore we face the same problem of computa-
tional versus statistical efficiency. This trade-off lies at the heart of any sensible MCMC
methodology, yet currently it is handled almost exclusively in an ad hoc fashion. Such
grand challenges call for Inception—to borrow a catchy phrase from Hollywood—rather
than mere insomnia.

For partially non-centering (i.e., conditional augmentation), the choice of an “optimal”
working parameter is the key. Here again one must balance implementability, computing
time, and statistical efficiency. A crude approximation of the optimal scheme, such as the
linear approximation (2.6), may be preferred if a finer approximation requires too much
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analysis, is too difficult to implement, or takes too much time per iteration. An impor-
tant difference in implementation between partially non-centering and ASIS is that the
optimal partially non-centering scheme is expected to be data-dependent (see, e.g., (2.4)),
whereas constructing sufficient and ancillary augmentations is model-dependent but not
data-dependent. The absence of this tuning parameter (the working parameter) is often a
practical advantage of ASIS (with its trade-offs as discussed in Section 2.3). Of course, as
long as the implementation is easy, one can also interweave a centered augmentation and a
partially non-centered one derived from it, as in HR’s normal example.

With the ever-increasing complexity of statistical models, the need for general and ef-
fective MCMC is also ever increasing (and so is the insomnia of the designers of such
algorithms). Kelly’s discussion illustrates both the potential for interweaving and the need
for more research in this area. After constructing a sufficient augmentation δ̃, he samples
the parameters γ along a suitable direction that leaves δ̃ invariant. Like our example of
normal regression under censoring, this demonstrates the flexibility of the interweaving
strategy. One issue noted by Kelly is that sometimes it is difficult to obtain useful suffi-
cient augmentations for certain parameters, which of course limits the applicability of the
method. There is much room for both theoretical and empirical investigations, and again
the key is to have innovative ideas.

As an example of brainstorming, consider a highly complex model that carries many
nuisance parameters. If the goal of MCMC is to obtain the marginal posterior of the few
parameters of interest, to what extent can we ignore the poor convergence of the nuisance
parameters? Obviously all components must converge in order for a joint chain to con-
verge. However, as we mentioned in Section 1.1, by now there are a number of practical
examples where the joint chain is not even positive recurrent, yet the subchain correspond-
ing to the parameters of interest converges not only properly but also rapidly. If, in certain
problems, it is indeed possible to ignore the poor convergence of nuisance parameters, then
we can focus on improving the convergence for a few targeted parameters of interest. Our
component-wise interweaving strategy (CIS) seems especially relevant in such situations.

Last but not least, we cannot have sweet dreams without thanking the discussants
for their inspirations, especially HR’s theoretical insight, PRS’s methodological advance,
Kelly’s practical implementation, and Wu’s unsupervised learning. Of course the editor,
Professor Richard Levine, deserves all our morning gratefulness for his confidence in and
help with our article, and for his sharing our belief that we statisticians can have our own
midsummer night’s dream.
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Romanovič, V. A. (1975), “The Maximal Partial Correlation Coefficient of Two σ -Algebras Relative to a Third
σ -Algebra,” Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 10, 94–96. [604]

Tanner, M. A., and Wong, W. H. (2010), “From EM to Data Augmentation: The Emergence of MCMC Bayesian
Computation in the 1980s,” Statistical Science, 25, 506–516. [603]


	Dream on: From DA to GIS to CIS
	Parallel Dreams
	Progressive Insights

	Statistical Ambien for MCMC Insomnia
	Two Ways to Break the Cycle
	Residual Augmentation
	The Roles of Sufficiency and Ancillarity
	Flexibility in Constructing Residual Augmentations

	More Insomnia and Needing Inception
	Acknowledgments
	Additional References

